The Crystal Structure of EuSO₄ and EuCO₃

By I. MAYER, E. LEVY AND A. GLASNER

Department of Inorganic and Analytical Chemistry, Hebrew University, Jerusalem, Israel

(Received 30 July 1963 and in revised form 24 October 1963)

The crystal structures of EuSO₄ and EuCO₃ have been studied by the powder diffraction method. The space group found for EuSO₄ is *Pnma* (D_{2h}^{16}) while for EuCO₃ it is *Pmcn* (Pnma) (D_{2h}^{16}) . The orthorhombic lattice constants of EuSO₄ are a = 8.333, b = 5.326, c = 6.861 Å, while those of EuCO₃ are a = 5.102, b = 8.422, c = 6.030 Å. The radius of divalent europium is discussed.

Introduction

In the course of an investigation on the thermal decomposition of europium(III) oxalate, divalent europium compounds were obtained as intermediates (Glasner, Levy & Steinberg, 1963). These results have prompted the present X-ray study of europium(II) sulphate and europium(II) carbonate.

While no information was available on the structure of EuCO₃, some reported data on EuSO₄ (Pauling, 1937) showed it to be isomorphous with the corresponding barium and strontium salts.

Experimental and results

Preparations. The starting material was Eu_2O_3 from the Lindsay Co. (Code 1013, 99.9% pure). EuSO₄ was prepared by dissolving the oxide in hydrochloric acid and passing the solution through a Jones reductor into 8N H₂SO₄, following the method described in *Inorganic Syntheses* (Cooly & Yost, 1946).

Lemon yellow anhydrous crystals of EuCO₃ were

obtained by digesting $EuSO_4$ in a 1:1 NaOH + NaHCO₃ solution (Cooly & Yost, 1946).

The densities of both compounds were measured by the pycnometric method, using benzene.

X-ray analysis of the powdered salts has been made by a General Electric Diffractometer with filtered Cu K radiation. Thin layers of the samples were spread out on microscope slides coated with petrola-

 Table 1. Lattice constants and densities of EuSO₄, EuCO₃

 and the corresponding strontium salts

Com- pound	Lattic	e paramet	Density (g.cm ⁻³)		
	a	b	c	calc.	obs.
EuSO4	8·333 (8·46)	5.326 (5.37)	6.861 (6.90)	5.409 (5.22)	5.44 (4.99)
SrSO ₄ * EuCo ₃ SrCo ₃ †	8·359 5·102 5·107	5·352 8·422 8·414	6·866 6·030 6·029	5.433	5.61

* Swanson & Fuyat, 1953.

† Swanson, Fuyat & Ugrinic, 1954.

Table 2. Calculated and observed $Q_{hkl} = 1/d_{hkl}^2$ and observed intensities

$EuSO_4$					EuCO ₃				
hkl	Q_c	Q_o	Io		hkl	Q_{c}	Q_o	I _o	
011	0.0565	0.0568	25		110	0.0525	0.0529	10	
111	0.0709	0.0705	15		020	0.0564			
201	0.0789	0.0787	10		111	0.0800	0.0803	100	
002	0.0850	0.0847	20		021	0.0839	0.0840	40	
210	0.0928	0.0928	100		002	0.1100	0.1100	15	
102	0.0994	0.0993	25		121	0.1223		_	
211	0.1141	0.1141	45		012	0.1241	0.1245	5	
112	0.1347	0.1348	20		102	0.1484	_	_	
020	0.1410	0.1410	15		200	0.1536	0.1538	10	
301	0.1209				112	0.1625	0.1622	20	
121	0.1767	0.1770	7		130	0.1653	awanlannad	25)	
212	0.1779	_			022	0.1664	ovenappeu	30	
220	0.1986	0.1984	7		211	0.1952	—	_ `	
103	0.2057	0.2055	5		220	0.2100	0.2096	7	
302	0.2146		_		040	0.2256	_	_	
221	0.2199	0.2200	10		221	0.2375	0.2375	30	
(122	0.2404		a a)		041	0.2531	0.2530	8	
113	0.2409	overlapped	60 }		202	0.2636	0.2638	15	
203	0.2489	0.2495	30 Í		132	0.2753	0.2753	20	
					141	0.2915	_	—	
					113	0.3000	0.2999	20	
					023	0.3039	0.3036	20	

tum, in order to reduce absorption of the radiation by the europous salts.

Diffraction patterns of EuSO₄ and EuCO₃ were indexed, and in both cases the unit cells were found to be orthorhombic. The lattice constants and densities are given in Table 1 and compared with the respective constants for the strontium salts. Pauling's values for EuSO₄ are also given in brackets. Calculated and observed $1/d^2$ values are given in Table 2; good agreement between these values has been obtained.

Further examination of the patterns shows that EuSO₄ is isomorphous with SrSO₄ and has the BaSO₄ structure type with space group Pnma (D_{2h}^{16}) and four molecules in the unit cell, while EuCO₃ has a KNO₃ type structure, the space group being Pmcn (Pnma) (D_{2h}^{16}) , and four molecules in the unit cell.

Discussion

Comparison of the lattice constants of EuSO₄ found in this work with those obtained by Pauling shows that dimensions of the unit cell of EuSO₄ are somewhat smaller than reported by him. Pauling himself pointed out that there is some uncertainty in his results. On the other hand, as there is good agreement between the standard pattern and our measurements on SrSO₄, it may be assumed that there was no absorption error in our case to cause deviation of our results from those of Pauling. Moreover, the good agreement between the observed and calculated values of $1/d^2$, as well as of the density, leaves little doubt as to the reliability of the present results.

Crystal data of divalent europium compounds have been used by many authors to calculate the ionic radii of Eu^{2+} . Pauling, who found the lattice constants of EuSO₄ to be higher than those of SrSO₄, assumes the ionic radius of Eu²⁺ to be 1·17 Å (Sr²⁺=1·13 Å). Ketelaar also lists a somewhat higher value for the ionic radius of Eu²⁺ (1·14 Å) than for Sr²⁺ (1·10 Å) (Ketelaar, 1958). On the other hand, the lattice constants of the sulphide, selenide and telluride (Klemm & Senff, 1939) and the oxide (Eick, Baenziger & Eyring, 1956) of divalent europium, all with an NaCl type structure, were found to be slightly smaller than the lattice constants of the corresponding isomorphous strontium compounds. Hence the ionic radius of Eu²⁺ given by the above investigators is smaller by 0·03 Å than that of Sr²⁺.

The lattice constants of EuSO₄ and EuCO₃ in the present work indicate that the ionic radii of Eu²⁺ and Sr²⁺ are equivalent, that of europium being somewhat smaller, certainly not larger, than that of strontium.

References

- Cooly, R. A. & Yost, A. M. (1946). Inorganic Syntheses. Vol. II, p. 70. New York: McGraw-Hill.
- EICK, H. A., BAENZIGER, N. C. & EYRING, L. (1956). J. Amer. Chem. Soc. 78, 5147.
- GLASNER, A., LEVY, E. & STEINBERG, M. (1963). J. Inorg. Nucl. Chem. 25, 1415.
- KETELAAR, I. A. A. (1958). Chemical Constitution. p. 29. Amsterdam: Elsevier.
- KLEMM, W. & SENFF, H. (1939). Z. anorg. Chem. 241, 259.
- PAULING, L. (1937). J. Amer. Chem. Soc. 59, 1132.
- SWANSON, H. E. & FUYAT, R. K. (1953). Nat. Bur. Stand. Circular 539, Vol. II, 61.
- SWANSON, H. E., FUYAT, R. K. & UGRINIC, G. M. (1954). Nat. Bur. Stand. Circular 539, Vol. III, 56.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1964). 17, 1072

A note on the determination of phases by anomalous dispersion. By G. A. SIM, Chemistry Department, The University, Glasgow, W. 2, Scotland

(Received 11 March 1964)

where

The differences which arise between the intensities I(hkl) and $I(\bar{hkl})$, when anomalously scattering atoms are present in a non-centrosymmetric unit cell, offer access to the phases of the reflexions. Two solutions, α_1 and α_2 , are normally obtained for each independent reflexion and it appears to be customary to decide between these alternatives by adopting the value closer to the heavyatom phase, α_H (see, e.g., Dale, 1962; Hall & Maslen, 1964). While this undoubtedly selects the more probable phase for each reflexion it does not necessarily lead to the best electron-density distribution. To minimize the mean-square error in electron density each phase solution should be included with a weight proportional to the probability of its being the correct choice (cf. Woolfson, 1956; Dickerson, Kendrew & Strandberg, 1961).

It has been shown (Sini, 1959) that the probability of obtaining a value of $(\alpha - \alpha_H)$ between ξ and $\xi + d\xi$ is given by

$$p(\xi)d\xi = \exp((X\cos\xi)d\xi/2\pi I_0(X))$$